Object-based Layered Depth Images for improved virtual view synthesis in rate-constrained context

Vincent Jantet ¹, Christine Guillemot ², Luce Morin ³

¹ ENS Cachan, Antenne de Bretagne, Campus de Ker Lann, 35170 Bruz – France
² INRIA Rennes, Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes – France
³ IETR - INSA Rennes, 20 avenue des Buttes de Coësmes, 35043 Rennes – France

ICIP 2011
Context of multi-view videos

Functionalities:

3DTV: Depth feeling by stereo-vision simulation.

FVV: Live viewpoint selection.

Require a virtual view synthesis method.

Fig: 3D rendering
Table on contents

1 Introduction

2 Object-based classification

3 Rendering results

4 Compression results
Outline

1. Introduction
2. Object-based classification
3. Rendering results
4. Compression results
Depth Image-Based Rendering (DIBR)

Warping algorithm

Input: View and associated depth map

Output: New viewpoint (texture & depth)

Disocclusions

Obstructed scene information from reference viewpoint

They appear along depth discontinuities

Solution: Add additional informations (LDI)

Fig: Disocclusion
Layered Depth Image (LDI) [SGHS98]
A set of layers, containing depth pixels from a single viewpoint

From a reference viewpoint

1st layer \Rightarrow Reference view
Visible texture and depth
2nd layer \Rightarrow Residual data
Hidden texture and depth
Layered Depth Image (LDI) \[SGHS98\]

A set of layers, containing depth pixels from a single viewpoint

From a reference viewpoint

1st layer ⇒ Reference view
Visible texture and depth

2nd layer ⇒ Residual data
Hidden texture and depth

1st layer
Layered Depth Image (LDI) [SGHS98]

A set of layers, containing depth pixels from a single viewpoint

From a reference viewpoint

1st layer \Rightarrow Reference view
Visible texture and depth
2nd layer \Rightarrow Residual data
Hidden texture and depth
Limitations

- Redundant boundaries in both layers
- Moving elements in both layers
- Layers contain large depth discontinuities (Discontinuities are hard to compress)
Outline

1. Introduction
2. Object-based classification
3. Rendering results
4. Compression results
Object-based LDI representation
This representation organizes pixels into layers to enhance depth continuity

![Classical LDI depth layers](image1)

![Object-based LDI depth layers](image2)

Method based on a growing-region algorithm
Region R initialized with pixels where Z_{FG} and Z_{BG} are already defined.
For each pixel q outside R:
- Extrapolate Z_{FG} and Z_{BG}.
- Classify q.
Object-based LDI representation

This representation organizes pixels into layers to enhance depth continuity

1st layer

2nd layer

Fig: Classical LDI depth layers

Fig: Object-based LDI depth layers

Method based on a growing-region algorithm

Region R initialized with pixels where Z_{FG} and Z_{BG} are already defined.

For each pixel q outside R:
- Extrapolate Z_{FG} and Z_{BG}.
- Classify q.
Classification: Initializing

Foreground

Unclassified

Background
Classification: Results

Foreground

Unclassified

Background
Background inpainting [CPT03]

Advantages
- Remove unnecessary boundaries
- Inpainting processed once, before encoding stage
- No need of inpainting method at rendering stage

Fig: Background inpainting

Vincent Jantet (ENS-Cachan – France)
Outline

1. Introduction
2. Object-based classification
3. Rendering results
4. Compression results
Rendering results

Classical LDI rendering Virtual view inpainting O-LDI rendering
Fast mesh-based rendering

Continuous layers can be rendered as meshes.
Foreground mesh is partially transparent.

Fig: Meshes rendering
Fig: Object-based LDI
MVD compression (MVC)

Input views

V_1, V_3, V_5, V_7

Compressed views

V'_1, V'_3, V'_5, V'_7

Rendering

VSRS

Final view

V''_6

LDI compression (MVC)

Input LDI

LDI_4

Compression

LDI'_4

Compressed LDI

DIBR

Rendering

V_6

Final view
Rate-distortion curve

![Rate-distortion curve graph](image_url)

- **Object-based LDI**
- **Classical LDI**
- **MPEG (MVC/VSRS)**

Vincent Jantet (ENS-Cachan – France)
Conclusions on Object-Based LDI

Advantages
- Remove unnecessary boundaries ⇒ Improve compression
- Static background along time
- Compatible with fast mesh-based rendering
- Depth continuity improves rendering quality

Limit
- No backward compatibility with 2D decoding scheme

Questions?
Object removal by exemplar-based inpainting.

[JMG09] Vincent Jantet, Luce Morin, and Christine Guillemot.
Incremental-ldi for multi-view coding.

Layered depth images.